Select Page

Best Data Labelling and Annotation Services for AI & Machine Learning

Top-notch annotation service for machine learning and artificial intelligence enterprises that need high-quality training data for a wide range of industries.

get startedcontact us

Blockchain Education

Using our experts in data annotation and labelling, we are able to procure accurate and effective datasets.

Gain most out of AI

With the help of data labelling, AI and machine learning models are able to gain deeper insights into large datasets.


Our team is capable of handling a large volume of data while maintaining the required quality.

Focus on growth and innovation

With our help, you can save time and money whilst also preparing your data for AI engines. This allows you to focus on your overall development.

Multi-Source/ Cross-Industry capabilities

From a variety of sources, the team can produce AI-training data quickly and in large quantities across all industries.

Stay ahead of the competition

AI can learn more quickly because of the large amount of data it has access to due to the wide range of variables.

Competitive Pricing

Our robust data annotation platform ensures that projects are delivered on time and on budget as one of the leading data labelling companies.

Enhanced Data Security

Enhanced data security ensures data formats are policy controlled and preserved.

Availability & Delivery

Our next-gen data labelling platform enables high network up-time & on-time delivery of data, services & solutions.

Featured On

Why Choose Raw Data Label?



We have an extremely dedicated team that gets stuff done.


We assure a very smooth process and take pride in our customer service 

Fast tat

Unlike other companies, we have a faster TAT. 

We know exactly what you’re looking for. 

Projects Successfully Completed

What Our Clients are Saying

“It was gret working with the Raw Data Label team Had outsourced 100% of the work and saved a LOT of time that I wouldn’t have  otherwise.

Gina Hopkins

CEO of Lager Media

Can vouch for their work, good people and responsive staff.

Christopher Hopkins

CEO of Visa Nomads Inc.

Contact Us Now!


Do you use any particular software? Can I do my work on this platform? Are there features to keep track of and manage all my annotations?

For your ML/AI project, a professional data annotator will employ sophisticated labelling tools. Controlling your annotation crew should not be a problem if you choose one of the top software solutions, which include capabilities such as tracking, reporting, and quality assurance (QA).

What methods will I use to teach my new employees? How long will it take, and how much time will it take?

Experts in your field are typically assigned to annotate your data by data labelling service providers. Documentation and a few meetings are usually all it takes for a new task to get started in an AI project. In contrast, training for highly specialised fields such as healthcare or agriculture may take longer.

How can the quality of data labelled for machine learning be assessed? Is there an example review available on your site? What if this quality doesn’t meet my project’s needs?

There are a variety of metrics you may use to gauge the efficiency of your annotation crew. An organization’s productivity can be measured, for example, by the calibre, quantity, and level of commitment of its employees. In order to properly classify and evaluate errors, it is essential to conduct a sample review.

How will I keep in touch with my new coworkers? Will they be able to respond to my queries and provide me an answer?

Labeling team reaction times can be critical when it comes to your product or customer experience. That’s why it’s so important to establish up the correct communication channels and schedules between your machine learning and annotation teams.

Is the data you have on me safe? Is there a way to ensure that only those who are permitted can access it? Every data labeler needs to sign a Non-Disclosure Agreement (NDA).

One of the responsibilities of a reputable outsourcing company is to keep client data safe. Access-setting features in modern picture, audio, video, and text annotation applications aid in corporate data control. Top data labelling suppliers will also sign non-disclosure agreements to protect the privacy of their clients.

It’s important to know if current privacy laws will protect the sensitive information. Is the personal information in my raw dataset secure?

In order to comply with GDPR, CCPA, and other privacy laws, most advanced data annotation software includes capabilities that assist your firm keep the personal information in your dataset secret. No other tools or add-ons are required, so you don’t have to worry about compromising your privacy.

Do I have to pay a fee? What factors influence the pricing of a product?

Data volumes, the number of active labelers, and annotations all influence the cost of a project. Classification is the most affordable assignment, whereas object identification is the most expensive.

Is it possible that you’ll meet my deadlines? And what if the data labelers need more time to finish the project than originally planned? How many people should I have on my team?

As a manager of an annotating team, you should be able to predict the time and resources needed to label a given volume of data. Before the team begins working on your dataset, you should discuss and document any potential grounds for deadline re-scheduling in a formal contract..

What method will you use to achieve your goals? Does it matter what format I use?

A user should have the option of choosing the output data format. Any labelled data machine learning output doesn’t matter if it’s in Excel, XML, CSV, JSON, or any other extension type.

What if, in the middle of the project, I need to alter the volume or labelling approach? Will my team be able to adapt to new demands if they come my way?

To be really customer-focused, a service provider must be flexible enough to adapt to the ever-changing needs of its clients. So, there is the option to hire additional data labelers or devote more time to the project.